Updating Probabilistic XML

Evgeny Kharlamov, Werner Nutt, Pierre Senellart²

¹ Free University of Bozen-Bolzano ² Télécom Paris Tech

³ INRIA Saclay – Île-de-France

Updates in XML, Lausanne, March 2010

Outline

- I. Probabilistic data
- 2. Problem of updates
- 3. Updating desecrate PXML
- 4. Updating continuous PXML

Applications of Probabilistic Data

- Approximate query processing: ranking, linkage
- Information extraction: approximate search for entities (e.g. names) in text
- Sensor data: imprecise or missing readings

• ...

Probabilistic DB:

Probabilistic DB:

Probabilistic DB:

Answer: (a, 0.8)

Answer: (a, 0.8)

5/25

• MUX: 4

• $Pr(d) = 0.4 \times 0.1$

• $Pr(d) = 0.4 \times 0.1$

• MUX: 4

• MUX: 4

• $Pr(d) = 0.4 \times 0.1$

• $Pr(d) = 0.4 \times 0.1$

• MUX: 4

• $Pr(d) = 0.4 \times 0.1$

• (MUX: 4

• $Pr(d) = 0.4 \times 0.1$

• (MUX: 4

Semantics: a world d

- c = true (current data)
- MUX: 4
- $Pr(d) = 0.4 \times 0.1$

Discrete Probabilistic XML Documents

- Probabilistic XML document D
 - represents (exponentially) many documents d
 - each with probability Pr(d)
- It is achieved by
 - Events formulas on edges: over Bool. random vars.
 Capture long-distance correlations
 - Distributional nodes: Mux, Det.
 Capture local (hierarchical) dependancies.

Discrete Probabilistic XML Documents

- Probabilistic XML document D
 - represents (exponentially) many documents d
 - each with probability Pr(d)
- It is achieved by
 - Events formulas on edges: over Bool, random vars.
 Capture long-di Special case of event formulas
 - Distributional nodes: Mux, Det.
 Capture local (hierarchical) dependancies.

Outline

- I. Probabilistic data
- 2. Problem of updates
- 3. Updating desecrate PXML
- 4. Updating continuous PXML

Update Operations

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in
- ⇒ We want to insert (delete) data in PXML.
 We want to do it conditionally.

Update Operations

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in
- ⇒ We want to insert (delete) data in PXML.
 We want to do it conditionally.

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in

Update operation (q, n, t): q^{n,t}

- q condition query (formally will be defined later)
- n locator of the update
- t the actual new data (tree) to be inserted

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in

Update operation (q, n, t): q^{n,t}

- q condition query (formally will be defined later)
- n locator of the update
- t the actual new data (tree) to be inserted

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in

Update operation (q, n) t): q^{n,t}

- q condition query (formally will be defined later)
- n locator of the update
- t the actual new data (tree) to be inserted

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in

Update operation (q, n,t): q^{n,t}

- q condition query (formally will be defined later)
- n locator of the update
- t the actual new data (tree) to be inserted

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in

Update operation (q, n, t): q^{n,t}

- q condition query (formally will be defined later)
- n locator of the update
- t the actual new data (tree) to be inserted

- For every professor, insert a bonus of 5 only if her team is in some EU project
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in
- Update operation (q, n, t): q^{n,t}
 Inspired by 2 update languages for XML
- XUpdate, based on XPath
- XQuery Update Facility, based on XQuery

- a. (Restricted) Single-Path updates (R)SP
- b. Tree-Pattern updates TP
- c. Tree-Pattern updates with Joins TPJ

- a. (Restricted) Single-Path updates (R)SP
- b. Tree-Pattern updates TP
- c. Tree-Pattern updates with Joins TPJ

- a. (Restricted) Single-Path updates (R)SP
- b. Tree-Pattern updates TP
- c. Tree-Pattern updates with Joins TPJ

- a. (Restricted) Single-Path updates (R)SP
- b. Tree-Pattern updates TP
- c. Tree-Pattern updates with Joins TPJ

Semantics of Insertions

- For every professor, insert a bonus of 5 only if her team is in some EU project
 - Only-if semantics:
 Inserts at most one bonus per professor
- For every professor, insert a bonus of X for all EU projects with a duration of X years, that her team is involved in
 - For-all semantics:
 Inserts possibly many bonuses for professors

Semantics of Updates for XML Documents

- Only-if semantics:
 For every match of n,
 if there is a match of q,
 then insert t under n
- For-all semantics:
 For every match of n,
 for all k matches of q,
 insert t under n k-times

- Only-if semantics:
 For every match of n,
 if there is a match of q,
 then insert t under n
- For-all semantics:
 For every match of n,
 for all k matches of q,
 insert t under n k-times

- Only-if semantics:
 For every match of n,
 if there is a match of q,
 then insert t under n
- For-all semantics:
 For every match of n,
 for all k matches of q,
 insert t under n k-times

- Only-if semantics:
 For every match of n,
 if there is a match of q,
 then insert t under n
- For-all semantics:
 For every match of n,
 for all k matches of q,
 insert t under n k-times

- Only-if semantics:
 For every match of n,
 if there is a match of q,
 then insert t under n
- For-all semantics:
 For every match of n,
 for all k matches of q,
 insert t under n k-times

Deletion operation: (q, n)

- Fire a professor if her team is in a EU project
- For every match of n,
 if there is a match of q, then
 delete n and all its descendants

 There is only one semantics for deletions, that is similar to Only-if semantics

Deletion operation: (q, n)

- Fire a professor if
 her team is in a EU project
- For every match of n,
 if there is a match of q, then
 delete n and all its descendants

 There is only one semantics for deletions, that is similar to Only-if semantics

Deletion operation: (q, n)

- Fire a professor if
 her team is in a EU project
- For every match of n,
 if there is a match of q, then
 delete n and all its descendants
- There is only one semantics for deletions, that is similar to Only-if semantics

Deletion operation: (q, n)

- Fire a professor if her team is in a EU project
- For every match of n,
 if there is a match of q, then
 delete n and all its descendants

 There is only one semantics for deletions, that is similar to Only-if semantics

D: PXML doc

Probability space of docs

D: PXML doc

Probability space of docs

D: PXML doc

Updated prob. space of docs

Updated prob. space of docs

D₁: PXML doc

Problems to Investigate

- We want to study computation of representations of updates
- Given a p-document D and update operation q
 - Is it possible to compute a p-document D that represents the update?
 - How hard is the computation?

Outline

- I. Probabilistic data
- 2. Problem of updates
- 3. Updating desecrate PXML
- 4. Updating continuous PXML

Querying PXML with Tree-Pattern Queries

Queries	Distr. nodes*	Event conjunct.*	Event formulas
TP	Р	#P-complete	
TPJ	#P-complete		

^{* [}Kimelfed&al:2007], [Senellart&al:2007]

#P functions - counting counterparts of NP problems.

E.g. counting sat.-assignments for prop. CNF formulas.

Believed to be harder than NP.

Only-if Insertions: Data Complexity

Only-if	Distr. nodes	Event conjunct	Event formulas
RSP	Linear		
SP	P*	#D band	Linear
TP	?	#P-hard	D
TPJ	#P-hard		r

^{*} only for queries without descendent edges

The same table holds for deletions

Only-if Insertions: Data Complexity

Only-if	Distr. nodes	Event conjunct	Event formulas
RSP		Linear	
SP	P*	#D band	Linear
TP	?	#P-hard	В
TPJ	#P-hard		r

^{*} only for queries without descendent edges

The same table holds for deletions

Only-if Insertions: Data Complexity

Only-if	Distr. nodes	Event conjunct	Event formulas
RSP	Linear		
SP	P*	#D band	Linear
TP	?	#P-hard	D
TPJ	#P-hard		r

^{*} only for queries without descendent edges

The same table holds for deletions

- For every match of n, if there is a match of q, then insert t under n
- in this case only-if and for-all semantics coincide

- For every match of n, if there is a match of q, then insert t under n
- in this case only-if and for-all semantics coincide

in this case only-if and for-all semantics coincide

then insert t under n

- For every match of n, if there is a match of q, then insert t under n
- in this case only-if and for-all semantics coincide

in this case only-if and for-all semantics coincide

- For every match of n, if there is a match of q, then insert t under n
- in this case only-if and for-all semantics coincide

- For every match of n, if there is a match of q, then insert t under n
- in this case only-if and for-all semantics coincide

- For every match of n, if there is a match of q, then insert t under n
- in this case only-if and for-all semantics coincide

For-all Insertions: Data Complexity

For-all	Distributional nodes	Event conj	Event formulas
RSP	Linear/P [†]		
SP	not in PTIME *	Linear/P [†]	
TP	not in PTIME	Р	
TPJ	not in PTIME, #P-hard	P*	Р

[†] Linear/P: Linear for queries w/o descendent edges, Polynomial otherwise

the computation is not in PSPACE, from [Abiteboul&al.:2009]

Outline

- I. Probabilistic data
- 2. Problem of updates
- 3. Updating desecrate PXML
- 4. Updating continuous PXML

Continuous PXML

N(30, 4) - Normal distribution

- Probabilistic p-documents with continuous distributions stored on the leaves
- Semantics defined in terms of continuous sets of XML documents

Problems with Updates

 Insert an alerter "increases" for a sensor only-if the second measurement is greater than the first one

- probability of the insertion (event) is 1/2
- the update is not representable with event formulas and distributions on leaves: we need correlations between distributions

Conclusion

- Comprehensive picture of updates' complexity:
 - Discrete PXML models with distributional nodes and event formulas
 - RSP, SP, TP and TPJ update operations
- Polynomial algorithm for SP update operations without descendent edges
- Results can be generalized to other PXML models and probabilistic updates
- Continuous PXML: problems are highlighted

Thank you

References

- [Kimelfeld&al:2007] Benny Kimelfeld, Yehoshua Sagiv: Matching Twigs in Probabilistic XML.VLDB 2007: 27-38
- [Senellart&al:2007] -Pierre Senellart, Serge Abiteboul: On the complexity of managing probabilistic XML data. PODS 2007: 283-292