Introduction

Related work

The uniform model of RTP

Update-FD Independence

Conclusion

Regular tree patterns: a uniform formalism for update queries and functional dependencies in XML

Hicham Idabal¹ Françoise Gire¹

¹CRI, Paris1 University, France

Updates in XML 2010

Introduction Related work Th o o o	00	Jpdate-FD Independe
---	----	---------------------

Conclusion

Outline

Introduction

The problem of independence Example

Related work

The uniform model of RTP

The model of Regular Tree Pattern (RTP) Modelling functional dependencies by RTPs Modelling update classes by RTPs

Update-FD Independence

Independence problem is PSPACE-hard An independence criterion Criterion checking & Complexity

Conclusion

n	tr	n	d	Ū.	ct	ic	ור	n	
		~	u	u	0		~	1	

õ

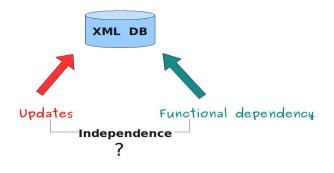
Related work

The uniform model of RTP

Update-FD Independence

Conclusion

Introduction: the problem of independence



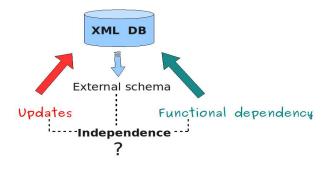
ļ	n	tr	0	d	u	ct	i	D	n	

The uniform model of RTP

Update-FD Independence

Conclusion

Introduction: the problem of independence



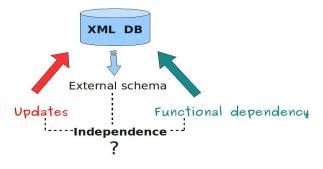
l.	Related	work	The	unifo
			000	,

he uniform model of RTP

Update-FD Independence

Conclusion

Introduction: the problem of independence



Goal

Introduction

Detecting independence will help us to avoid a new verification of the functional dependency

Introduction

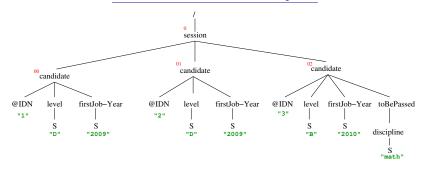
Related work

The uniform model of RTP

Update-FD Independence

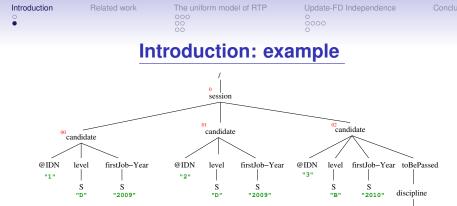
Conclusion

Introduction: example



XML documents $\mathcal{D}=(D, \lambda, val)$

- $D \subset \mathbb{N}^*$: a tree domain denoted by $\mathcal{N}(\mathcal{D})$
- $\lambda : D \to \Sigma = EI \cup A \cup \{S\}$
- val: D → D ∪ I*



A functional dependency (satisfied before the update)

"Two candidates with a job and a same academic level, have got their first job the same year."

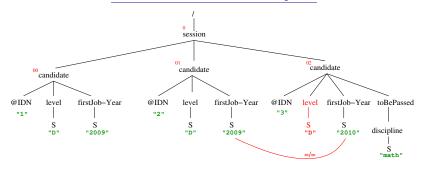
"math"

uction	Related work	The uniform model of RTP
		000
		00
		~~~

Update-FD Independence

Conclusion

### Introduction: example



#### An update

Introdu

" Update the level of each candidate having to pass some remaining exams"

#### A functional dependency (not satisfied after updating)

"Two candidates with a job and a same academic level, have got their first job the same year."



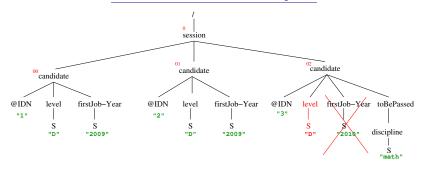
Related work

The uniform model of RTP

Update-FD Independence

Conclusion

### Introduction: example



#### Schema :Sc

candidate :(level,(firstJob-Year|toBePassed))

The functional dependency "Two candidates with a job and a same academic level, have got their first job the same year" remains satisfied after the update

Introduction

Related work

The uniform model of RTP

Update-FD Independence

Conclusion

### Related work

#### Some works in the area:

- -[W. Fan & al, 2000 2002] "Integrity constraints for XML"
- -[P. Buneman & al, 2003] "Reasoning about Keys for XML"

-[S. Hartmann & S. Link, 2003] "More Functional Dependencies for XML"

-[M. Arenas & L. Libkin, 2004] "A normal form for XML documents"

#### • Similar works using updates:

-[Y. Chen & al, 2002] "XKvalidator: a constraint validator for XML" -[M. A. Lima, 2007] "Maintenance incrémentale des contraintes d'intégrité en XML" Introduction

Related work

The uniform model of RTP

Update-FD Independence

Conclusion

### Related work

#### • Some works in the area:

- -[W. Fan & al, 2000 2002] "Integrity constraints for XML"
- -[P. Buneman & al, 2003] "Reasoning about Keys for XML"

-[S. Hartmann & S. Link, 2003] "*More Functional Dependencies for XML*"

-[M. Arenas & L. Libkin, 2004] "A normal form for XML documents"

#### • Similar works using updates:

-[Y. Chen & al, 2002] "XKvalidator: a constraint validator for XML" -[M. A. Lima, 2007] "Maintenance incrémentale des contraintes d'intégrité en XML"

## **Expressing functional dependencies**

The most commonly used model is based on simple linear paths.

### Example:

"Two candidates with a job and a same academic level, have got their first job the same year"

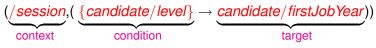
(/session ,( {candidate/level}  $\rightarrow$  candidate/firstJobYear))

## **Expressing functional dependencies**

The most commonly used model is based on simple linear paths.

#### Example:

"Two candidates with a job and a same academic level, have got their first job the same year"

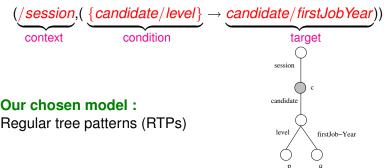


## **Expressing functional dependencies**

The most commonly used model is based on simple linear paths.

#### Example:

"Two candidates with a job and a same academic level, have got their first job the same year"



### Regular tree pattern: the definition

 $\Sigma$  is a finite alphabet of labels.

Definition ( $\mathcal{R} = (\mathcal{T}, \overrightarrow{s})$  : n-ary regular tree pattern over  $\Sigma$  )

*T* = (Σ, *N*, *M*, *E*) is the regular tree template composed of

 a tree (*N*, *M*) with *N* as tree domain and *M* ⊆ *N* × *N* as
 associated set of edges.

- an application  $\mathcal{E}: M \longrightarrow REG(\Sigma)$ 

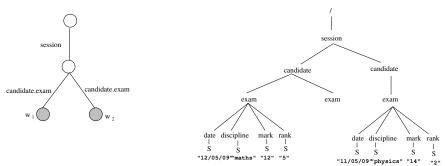
•  $\overrightarrow{s} = (w_1, ..., w_n)$  is the tuple of selected nodes.

The uniform model of RTP

## Regular tree pattern: the evaluation(1)

Let  $\mathcal{R} = (\mathcal{T}, \vec{s})$  be a regular tree pattern with  $\mathcal{T} = (\Sigma, N, M, \mathcal{E})$ and  $\mathcal{D} = (D, \lambda, val)$  be an XML document

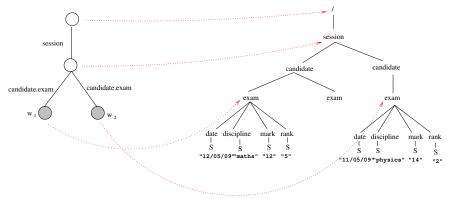
#### Mapping:



## **Regular tree pattern: the evaluation(1)**

Let  $\mathcal{R} = (\mathcal{T}, \overrightarrow{s})$  be a regular tree pattern with  $\mathcal{T} = (\Sigma, N, M, \mathcal{E})$ and  $\mathcal{D} = (D, \lambda, val)$  be an XML document

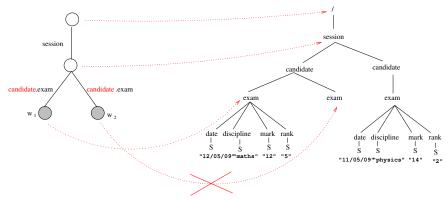
#### Mapping:



## **Regular tree pattern: the evaluation(1)**

Let  $\mathcal{R} = (\mathcal{T}, \overrightarrow{s})$  be a regular tree pattern with  $\mathcal{T} = (\Sigma, N, M, \mathcal{E})$ and  $\mathcal{D} = (D, \lambda, val)$  be an XML document

#### Mapping:

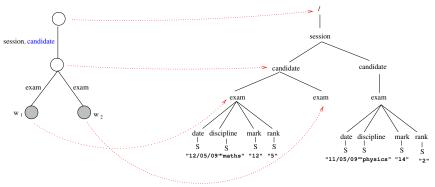


The uniform model of RTP

## Regular tree pattern: the evaluation(1)

Let  $\mathcal{R} = (\mathcal{T}, \vec{s})$  be a regular tree pattern with  $\mathcal{T} = (\Sigma, N, M, \mathcal{E})$ and  $\mathcal{D} = (D, \lambda, val)$  be an XML document

#### Mapping:

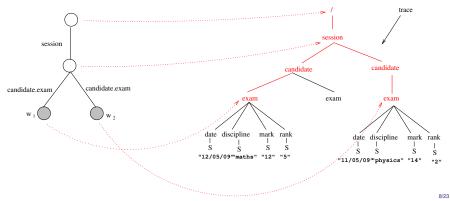


The uniform model of RTP

## Regular tree pattern: the evaluation(1)

Let  $\mathcal{R} = (\mathcal{T}, \vec{s})$  be a regular tree pattern with  $\mathcal{T} = (\Sigma, N, M, \mathcal{E})$ and  $\mathcal{D} = (D, \lambda, val)$  be an XML document

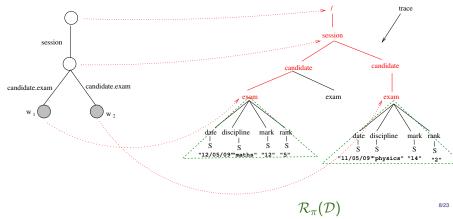
#### Mapping:



## **Regular tree pattern: the evaluation(1)**

Let  $\mathcal{R} = (\mathcal{T}, \overrightarrow{s})$  be a regular tree pattern with  $\mathcal{T} = (\Sigma, N, M, \mathcal{E})$ and  $\mathcal{D} = (D, \lambda, val)$  be an XML document

#### Mapping:



## Regular tree pattern: the evaluation(2)

#### Evaluation of ${\mathcal R}$ over ${\mathcal D}$

- Let  ${\boldsymbol{\mathcal{P}}}$  be the set of all mappings of  ${\boldsymbol{\mathcal{R}}}$  in  ${\boldsymbol{\mathcal{D}}}$
- The evaluation of *R* over *D* according to *π* ∈ *P* is defined by : *R_π(D)*=(*D*(*π*(*w*₁)),...,*D*(*π*(*w*_n))) where *s* =(*w*₁,...,*w*_n), and *D*(*π*(*w*_k)) sub-tree rooted at *π*(*w*_k).

## **Regular tree pattern: the evaluation(2)**

#### Evaluation of ${\mathcal R}$ over ${\mathcal D}$

- Let  ${\boldsymbol{\mathcal{P}}}$  be the set of all mappings of  ${\boldsymbol{\mathcal{R}}}$  in  ${\boldsymbol{\mathcal{D}}}$
- The evaluation of *R* over *D* according to *π* ∈ *P* is defined by : *R_π(D)*=(*D*(*π*(*w*₁)), ..., *D*(*π*(*w*_n))) where *s* =(*w*₁,..., *w*_n), and *D*(*π*(*w*_k)) sub-tree rooted at *π*(*w*_k).
- The evaluation of  $\mathcal{R}$  over  $\mathcal{D}$  is then :  $\mathcal{R}(\mathcal{D}) = \bigcup_{\pi \in \mathcal{P}} \mathcal{R}_{\pi}(\mathcal{D})$

### Modelling functional dependencies by RTPs

#### Definition

An XML functional dependency is an expression  $fd = (\mathcal{F}D, c)$  where:

- $\mathcal{F}D = (\mathcal{T}, \vec{s} = \{p_1[E_1], p_2[E_2], ..., p_n[E_n], q[E_{n+1}]\})$  is a regular tree pattern.  $p_1, ..., p_n$  and q are associated with an equality type  $E_i \in \{V, N\}$  (i=1,..., n+1)
- c (context node) is an ancestor node of p₁, p₂, ..., p_n (condition nodes) and of q (target node)

V is the value equality:  $(w_1 \equiv_v w_2 \Leftrightarrow \mathcal{D}(w_1) \text{ and } \mathcal{D}(w_2) \text{ have the same value.})$ N is the node equality:  $w_1 \equiv_N w_2$  iff  $w_1 = w_2$ 

### Satisfaction of a functional dependency

#### **Definition**

A document D satisfies the functional dependency  $(\mathcal{FD}, c)$  iff:



Update-FD Independence

Conclusion

### Satisfaction of a functional dependency

#### Definition

A document D satisfies the functional dependency  $(\mathcal{F}D, c)$  iff:

IF for two traces,  $\tau_1 = \text{trace}_{\pi_1}(\mathcal{F}D, \mathcal{D})$  and  $\tau_2 = \text{trace}_{\pi_2}(\mathcal{F}D, \mathcal{D})$ , with (a)  $\pi_1(c) =_N \pi_2(c)$ (b)  $\forall i = 1, ..., n, \pi_1(p_i) =_{E_i} \pi_2(p_i)$ ,

## Satisfaction of a functional dependency

#### Definition

A document D satisfies the functional dependency  $(\mathcal{F}D, c)$  iff:

IF for two traces,  $\tau_1 = \text{trace}_{\pi_1}(\mathcal{F}D, \mathcal{D})$  and  $\tau_2 = \text{trace}_{\pi_2}(\mathcal{F}D, \mathcal{D})$ , with (a)  $\pi_1(c) =_N \pi_2(c)$ (b)  $\forall i = 1, ..., n, \pi_1(p_i) =_{E_i} \pi_2(p_i)$ ,

THEN  $\pi_1(q) =_{E_{n+1}} \pi_2(q)$ 

We use the same model for updates.

- F. Gire and H. Idabal "Updates and Views Dependencies in Semi-structured Databases" IDEAS 2008

An update q is a composition of

 $\rightarrow$  a node selection process ( $\mathcal{U}$ )

We use the same model for updates.

- F. Gire and H. Idabal "Updates and Views Dependencies in Semi-structured Databases" IDEAS 2008

An update q is a composition of

- $\rightarrow$  a node selection process ( $\mathcal{U}$ )
- $\rightarrow$  a replacement function (*f*)

We use the same model for updates.

- F. Gire and H. Idabal "Updates and Views Dependencies in Semi-structured Databases" IDEAS 2008

An update *q* is a composition of  $\rightarrow$  a node selection process ( $\mathcal{U}$ )  $\rightarrow$  a replacement function (*f*)  $\Rightarrow$  *q* = *f* o  $\mathcal{U}$ 

We use the same model for updates.

- F. Gire and H. Idabal "Updates and Views Dependencies in Semi-structured Databases" IDEAS 2008

An update q is a composition of  $\rightarrow$  **a node selection process (U)**   $\rightarrow$  a replacement function (f)  $\Rightarrow$  q = f o U

for simplicity, we identify q to  $\mathcal{U}$ .

We use the same model for updates.

- F. Gire and H. Idabal "Updates and Views Dependencies in Semi-structured Databases" IDEAS 2008

An update q is a composition of  $\rightarrow$  **a node selection process (U)**   $\rightarrow$  a replacement function (f)  $\Rightarrow$   $q = f \circ U$ 

for simplicity, we identify q to  $\mathcal{U}$ .

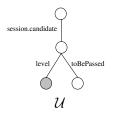
 $\ensuremath{\mathcal{U}}$  selects the nodes to be modified so it defines a class of updates

#### An update class $\ensuremath{\mathcal{U}}$ :

"For each candidate still having to pass some remaining exams, update his level"

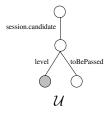
#### An update class $\ensuremath{\mathcal{U}}$ :

"For each candidate still having to pass some remaining exams, update his level"



#### An update class $\ensuremath{\mathcal{U}}$ :

"For each candidate still having to pass some remaining exams, update his level"



- q₁ ∈ U : "For each candidate still having to pass some remaining exams, decrease his level to the level just below"
- q₂ ∈ U : "For each candidate still having to pass some remaining exams, add a child node 'comment' to the 'level' node"

The uniform model of RTP

Update-FD Independence

Conclusion

# Independence Problem

#### Given

- Let fd be a functional dependency
- Let  $\mathcal{U}$  be a class of updates
- Let Sc be a Schema (given by an automaton  $A_{Sc}$ )

Update-FD Independence

Conclusion

## Independence Problem

#### Given

- Let fd be a functional dependency
- Let  $\mathcal{U}$  be a class of updates
- Let Sc be a Schema (given by an automaton  $A_{Sc}$ )

# Independence Problem

#### Given

- Let fd be a functional dependency
- Let U be a class of updates
- Let Sc be a Schema (given by an automaton  $A_{Sc}$ )

#### Independence problem :

fd is independent w.r to  $\mathcal{U}$  in the context of  $\mathcal{S}c$  iff:  $\forall \mathcal{D} \in valid(\mathcal{S}c), \forall q \in \mathcal{U} \text{ with } q(\mathcal{D}) \in valid(\mathcal{S}c),$ 

# Independence Problem

#### Given

- Let fd be a functional dependency
- Let U be a class of updates
- Let Sc be a Schema (given by an automaton  $A_{Sc}$ )

#### Independence problem :

fd is independent w.r to  $\mathcal{U}$  in the context of  $\mathcal{S}c$  iff:  $\forall \mathcal{D} \in valid(\mathcal{S}c), \forall q \in \mathcal{U} \text{ with } q(\mathcal{D}) \in valid(\mathcal{S}c),$ IF  $\mathcal{D}$  satisfies fd

# Independence Problem

#### Given

- Let fd be a functional dependency
- Let U be a class of updates
- Let Sc be a Schema (given by an automaton  $A_{Sc}$ )

#### Independence problem :

fd is independent w.r to  $\mathcal{U}$  in the context of  $\mathcal{S}c$  iff:  $\forall \mathcal{D} \in valid(\mathcal{S}c), \forall q \in \mathcal{U} \text{ with } q(\mathcal{D}) \in valid(\mathcal{S}c),$ IF  $\mathcal{D}$  satisfies fd THEN  $q(\mathcal{D})$  satisfies fd as well.

### Independence problem is PSPACE-hard

#### Proposition

Deciding whether a functional dependency *fd* is independent with respect to an update class  $\mathcal{U}$  is a PSPACE-hard problem

### Independence problem is PSPACE-hard

#### Proposition

Deciding whether a functional dependency *fd* is independent with respect to an update class  $\mathcal{U}$  is a PSPACE-hard problem

Proof We reduce the well-known PSPACE-hard problem of the inclusion of two regular expressions, into the problem of independence.

Update-FD Independence

Conclusion

### Independence problem: static analysis

Update-FD Independence

Conclusion

### Independence problem: static analysis

fd is not independent w.r. to  $\mathcal{U}$  in the context of  $\mathcal{S}c$  iff:

Update-FD Independence

Conclusion

### Independence problem: static analysis

fd is not independent w.r. to  $\mathcal{U}$  in the context of  $\mathcal{S}c$  iff:

 $\exists \mathcal{D} \in \text{valid}(\mathcal{S}c), \exists q \in \mathcal{U} \text{ with } q(\mathcal{D}) \in \text{valid}(\mathcal{S}c) \text{ and},$ 

fd is not independent w.r. to  $\mathcal{U}$  in the context of  $\mathcal{S}c$  iff:

 $\exists \mathcal{D} \in \text{valid}(\mathcal{S}c), \exists q \in \mathcal{U} \text{ with } q(\mathcal{D}) \in \text{valid}(\mathcal{S}c) \text{ and}, \mathcal{D} \text{ satisfies } fd \text{ while } q(\mathcal{D}) \text{ does not satisfy } fd$ 

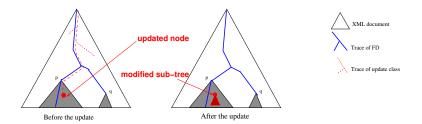
fd is not independent w.r. to  $\mathcal{U}$  in the context of  $\mathcal{S}c$  iff:

 $\exists \mathcal{D} \in \text{valid}(\mathcal{S}c), \exists q \in \mathcal{U} \text{ with } q(\mathcal{D}) \in \text{valid}(\mathcal{S}c) \text{ and,}$  $\mathcal{D} \text{ satisfies } fd \text{ while } q(\mathcal{D}) \text{ does not satisfy } fd$ 

So there is a node n of  $\mathcal{D}$  whose update by q generates a witness of the violation of fd in  $q(\mathcal{D})$ .

#### **First case**

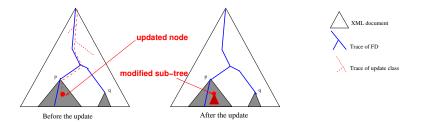
n belongs to one of the sub-trees rooted at condition or target nodes



#### **First case**

n belongs to one of the sub-trees rooted at condition or target nodes

 $\rightarrow$  its update doesn't modify the trace of  $\mathcal{F}D$  in  $\mathcal D$ 

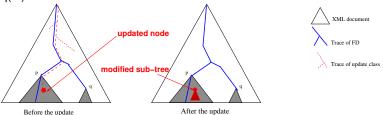


#### **First case**

n belongs to one of the sub-trees rooted at condition or target nodes

 $\rightarrow$  its update doesn't modify the trace of  $\mathcal{F}D$  in  $\mathcal D$ 

 $\rightarrow$  but the modified value of this subtree generates the violation of fd in q(D).

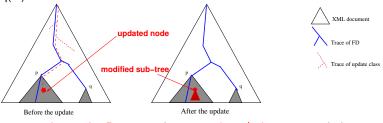


#### **First case**

n belongs to one of the sub-trees rooted at condition or target nodes

 $\rightarrow$  its update doesn't modify the trace of  $\mathcal{F}D$  in  $\mathcal D$ 

 $\rightarrow$  but the modified value of this subtree generates the violation of fd in q(D).



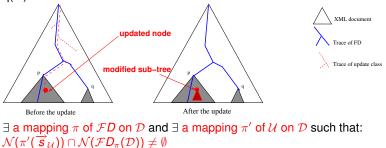
 $\exists$  a mapping  $\pi$  of  $\mathcal{FD}$  on  $\mathcal{D}$  and  $\exists$  a mapping  $\pi'$  of  $\mathcal{U}$  on  $\mathcal{D}$  such that:

#### **First case**

n belongs to one of the sub-trees rooted at condition or target nodes

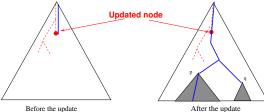
 $\rightarrow$  its update doesn't modify the trace of  $\mathcal{F}D$  in  $\mathcal D$ 

 $\rightarrow$  but the modified value of this subtree generates the violation of fd in q(D).



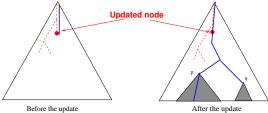
#### Second case

the updated node n generates a new trace of  $\mathcal{F}D$  in  $q(\mathcal{D})$  that contributes to the violation of *fd* 



#### Second case

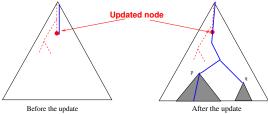
the updated node n generates a new trace of  $\mathcal{F}D$  in  $q(\mathcal{D})$  that contributes to the violation of *fd* 



 $\exists$  a mapping  $\pi$  of  $\mathcal{F}D$  on  $q(\mathcal{D})$  and  $\exists$  a mapping  $\pi'$  of  $\mathcal{U}$  on  $q(\mathcal{D})$  such that:

#### Second case

the updated node n generates a new trace of  $\mathcal{F}D$  in  $q(\mathcal{D})$  that contributes to the violation of *fd* 



 $\exists$  a mapping  $\pi$  of  $\mathcal{F}D$  on  $q(\mathcal{D})$  and  $\exists$  a mapping  $\pi'$  of  $\mathcal{U}$  on  $q(\mathcal{D})$  such that:  $\mathcal{N}(\pi'(\vec{s}_{\mathcal{U}})) \cap \mathcal{N}(trace_{\pi}(\mathcal{F}D, q(\mathcal{D}))) \neq \emptyset$ 

Intr		

Related work

The uniform model of RTP

Update-FD Independence

Conclusion

### An independence criterion

#### Definition

#### Let $\mathcal{L}$ be the language of XML documents $\mathcal{D}$ satisfying: (i) $\mathcal{D} \in \text{valid}(\mathcal{S}c)$ (ii) $\exists \tau_{\mathcal{F}D} = trace_{\pi}(\mathcal{F}D, \mathcal{D})$ , w.r to a mapping $\pi$ of $\mathcal{F}D$ on $\mathcal{D}$ , and $\exists \tau_{\mathcal{U}} = trace_{\pi'}(\mathcal{U}, \mathcal{D})$ , w.r to a mapping $\pi'$ of $\mathcal{U}$ on $\mathcal{D}$ , such that: $\mathcal{N}(\pi'(\vec{s}_{\mathcal{U}})) \cap (\mathcal{N}(trace_{\pi}(\mathcal{F}D, \mathcal{D})) \cup \mathcal{N}(\mathcal{F}D_{\pi}(\mathcal{D}))) \neq \emptyset$

Update-FD Independence

Conclusion

### An independence criterion

#### Definition

Let  $\mathcal{L}$  be the language of XML documents  $\mathcal{D}$  satisfying: (i)  $\mathcal{D} \in \text{valid}(\mathcal{S}c)$ (ii)  $\exists \tau_{\mathcal{F}D} = trace_{\pi}(\mathcal{F}D, \mathcal{D})$ , w.r to a mapping  $\pi$  of  $\mathcal{F}D$  on  $\mathcal{D}$ , and  $\exists \tau_{\mathcal{U}} = trace_{\pi'}(\mathcal{U}, \mathcal{D})$ , w.r to a mapping  $\pi'$  of  $\mathcal{U}$  on  $\mathcal{D}$ , such that:  $\mathcal{N}(\pi'(\vec{s}_{\mathcal{U}})) \cap (\mathcal{N}(trace_{\pi}(\mathcal{F}D, \mathcal{D})) \cup \mathcal{N}(\mathcal{F}D_{\pi}(\mathcal{D}))) \neq \emptyset$ 

#### Proposition[Independence criterion IC]

If  $\mathcal{L}$  is empty then *fd* is independent w.r to  $\mathcal{U}$  in the context of  $\mathcal{Sc}$ .

### Checking criterion IC & Complexity

 A regular Bottom-Up automaton A recognizing L can be built from the automaton A_{Sc} and the regular tree patterns *FD* and U

### Checking criterion IC & Complexity

- A regular Bottom-Up automaton A recognizing L can be built from the automaton A_{Sc} and the regular tree patterns *FD* and U
- The size  $|\mathcal{A}|$  of the automaton  $\mathcal{A}$  is in  $O(a_{\mathcal{U}}a_{\mathcal{F}D} \times |\Sigma|^2 \times |\mathcal{A}_{\mathcal{S}c}| \times |\mathcal{U}| \times |\mathcal{F}D|)$ , where  $a_{\mathcal{U}}$  and  $a_{\mathcal{F}D}$ are the maximal arities of  $\mathcal{U}$  and  $\mathcal{F}D$  respectively

### Checking criterion IC & Complexity

- A regular Bottom-Up automaton A recognizing L can be built from the automaton A_{Sc} and the regular tree patterns *FD* and U
- The size  $|\mathcal{A}|$  of the automaton  $\mathcal{A}$  is in  $O(a_{\mathcal{U}}a_{\mathcal{F}D} \times |\Sigma|^2 \times |\mathcal{A}_{\mathcal{S}c}| \times |\mathcal{U}| \times |\mathcal{F}D|)$ , where  $a_{\mathcal{U}}$  and  $a_{\mathcal{F}D}$ are the maximal arities of  $\mathcal{U}$  and  $\mathcal{F}D$  respectively
- The independence criterion *IC* is polynomial: the emptiness of the language  $\mathcal{L}$  is testable in  $O(a_{\mathcal{U}}^2 a_{\mathcal{F}D}^2 \times |\Sigma|^4 \times |\mathcal{A}_{\mathcal{S}C}|^2 \times |\mathcal{U}|^2 \times |\mathcal{F}D|^2)$  time.



### **Conclusion**

#### Main results :

- An uniform formalism based on RTPs
- The independence Problem is PSPACE-hard
- A sufficient criterion for checking the independence testable in polynomial time

Conclusion



Conclusion

### **Conclusion**

#### Main results :

- An uniform formalism based on RTPs
- The independence Problem is PSPACE-hard
- A sufficient criterion for checking the independence testable in polynomial time

#### To do :

- Axiomatisation and verification problems
- Necessary and sufficient condition in the case of special fds
- Implementation

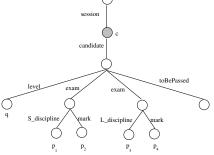
Introduction	Related work	The uniform model of RTP	Update-FD Independence	Conclusion
0		000	0	
0		00	0000	
		00	0	

# THANKS

Conclusion

### Advantages of our model

"Two candidates with the same mark in at least two disciplines and also having some remaining exams to pass, receive the same level".



#### *Sc* :

- exam : ((S_discipline|L_discipline), mark).
- L_disciplines appear after S_disciplines.

- Labels of two edges outgoing from a same node can share a common prefix.
- Leaves of *FD* are not only condition or target nodes.
- The order is relevant.