
March, 2010 XML Updates

Static Analysis of Declarative
Update Languages

Joint work with James Cheney
(includes DBPL2009, VLDB2009,
and current work)

2

Outline
• What is this about? Why bother?
• Who has worked on it? Did they get anywhere?
• Discussion of independence/Interaction analysis

• Unique to update setting
• Connections to provenance

• Our approach to independence analysis
• System description and results

• Future directions

3March, 2010 XML Updates

What Do You Mean
by Analysis?

3

Explanation of what an XML update expression produces.
E.g. type-inference:
Update U when applied to DTD D0 produces documents satisfying D1 .

This kind of problem has been studied to death for XML queries. What’s new with updates?

Old questions become harder for the new language.

Answering questions about what one or more update expressions can do.
Can U invalidate the schema? Are U1 and U2 the same?

Question about a program "classical static question"
Can this program update
this part of the document?

Intersection of
regular languages.
Constraint satisfaction
problem.

Answer

4March, 2010 XML Updates

What Do You Mean
by Analysis?

4

This has been studied to death for XML queries. What’s new with updates?

New questions:

Updates are created in order to do things incrementally.
Update should change only part of the document.
Analysis could tell what parts of the document can change.

• Result understanding.
• Really want to know the effect of an update – not captured by a type

obvious application to view maintenance: want to know if nothing relevant
to a view changes)

5March, 2010 XML Updates

Prior Work

Conversion to
Snapshot

B., Bonifati, Flesca,
Vyas

Iterative Updates

Language Authors Problems
Simple Updates:
{Insert/Delete/Replace} XPath

Schmueli Raghavachari
Byun/Yun/Park

“Conflict”

Functional Updates Cheney Type Checking

Snapshot Updates B. & Cheney Type Inference
Conflict

Flexible Updates
(Snapshot+Iterative)

Ghelli, Rose, Simeon Commutativity

Snapshot: all queries performed on input document.
Iterative: For $x in E P'($x) Evaluate E, iterate over it, performing P' each time.

6March, 2010 XML Updates

Independence Analysis
• Data migration scenario

– At periodic intervals a large dataset is to be upgraded/evolved. The
dataset must satisfy several hundred integrity constraints.

• Developers write integrity constraints R1 ... Rm update expressions U1...Un

• Written independently
• Integrity constraints must remain valid

– At evolution time, the goal is to apply the rules in sequence.

• If updates don’t interact with each other, can be applied in parallel.
• If updates and constraints don’t interact, constraints do not need to

be revalidated.

6

Focus on update/query interaction: is Q independent of U?
The same techniques apply to update/update commutativity.

March, 2010 XML Updates

Query/Update Independence

Several notions of "the nodes accessed by an XML query Q”.
Mostly given syntactically.

First used by Marian and Simeon in VLDB 2003: given a document D, find a
subdocument proj(Q,D) of D such that the Q returns same result on proj(Q,D) as
on D: “projection of Q on D”
• Intuitively, proj(Q,D) contains the nodes “read by Q”.
• used by B. , Bonifati, Flesca, Vyas for update analysis
• Variations (with significant differences) by Koch, Scherzinger et. al.,
Benzaken/Castagna/Colazzo/Nguyen, Ghelli, Rose, Simeon…

The natural approach to such problems:
see whether “U updates anything that Q can read”

What “U updates” is usually unproblematic:
but what are the items that Q reads?

8

Independence

• A notion of "updated stuff/ accessed stuff" (paths, types) and an
algorithm for
producing the accessed stuff"from a query and the updated stuff from an
update expression.

• An intersection test.

Many notions of "accessed nodes".
Algorithmically defined or axiomatically-defined

In many case the intersection test has been fairly trivial.
E.g. for downward paths.

Several prior works on independence analysis consist of two components:

Could be in terms of paths (Marian/Simeon, Ghelli/Rose/Simeon)
or in terms of schemas types (Benzaken, Castagna, Colazzo, Nguyen)

9

w3c update language proposal: XQuery Update Facility

• Snapshot language: simpler “one-pass”
implementation

• Analysis simpler than for “iterative” languages

• Certain kinds of errors cannot occur

• Counterintuitive (?) semantics

• does not do what you (probably) expect

delete $x//a,
insert <foo>bar</foo>
before $x//a

10

Example

delete $x//a,
insert <foo>bar</foo>
before $x//a

///

ccc aaa

aaa bbb aaa

11

First collect updates

delete $x//a,
insert <foo>bar</foo>
before $x//a

///

ccc aaa

aaa bbb aaa

///

ccc aaa

aaa bbb aaa

12

First collect updates

delete $x//a,
insert <foo>bar</foo>
before $x//a

///

ccc aaa

aaa bbb aaa

///

ccc aaa

aaa bbb aaa

///

ccc aaa

aaa bbb aaafoofoofoo

foofoofoo

foofoofoo

13

Then reorder & apply

delete $x//a,
insert <foo>bar</foo>
before $x//a

///

ccc aaa

aaa bbb aaa

///

ccc aaa

aaa bbb aaa

///

ccc aaa

aaa bbb aaafoofoofoo

foofoofoo

foofoofoo

14

Snapshot Languages – theoretical perspective

Core Atomic XQuery – XQuery without aggregate features or "value equality"
Nav. XQuery: as above, but fix the tag alphabet.
Core XUpdate = w3c proposal where queries come from Core Atomic XQuery.
Navigational XUpdate – as above but where only fixed tags are allowed.

Easy to show that Core/Nav XUpdate is more expressive than Core/Nav XQuery.
But not for boolean queries.

Theorem:
For boolean queries, Core XUpdate has same expressiveness as Core XQuery
= first-order logic over ordered data trees.

These equivalences are effective (but never implemented).
Can be used to show that questions about Nav. XUpdate are
decidable in principle.

15

Snapshot Languages – theoretical perspective

Independence analysis for XQuery, XUpdate
is closely related to the equivalence problem for these languages.

Several notions of equivalence of queries.

≅bool both results return nonempty or both empty (boolean semantics of queries)
≅node nodeids in result sequences are isomorphic over the input model
≅subtree subtrees in result sequences are isomorphic over the input model

Independence of U and Q can be defined as
∀ D Q(U(D)) ≅ Q(D) for any of the above equivalences.

Solvable if we could solve the equivalence problem for
compositions of queries and updates

March, 2010 XML Updates

Independence Analysis

Theorem For ≅bool , static equivalence of Navigational XQuery and
Navigational XUpdate is decidable but non-elementary.

From this, can show that independence is decidable.

Closely related to the problem of Core XQuery Equivalence

Uses translation of XUpdate into FO, extending that for Core XQuery in
B./Koch TODS 2009.

March, 2010 XML Updates

Independence Analysis

Theorem For ≅node and ≅subtree decidability of query equivalence
and update equivalence is an open question.
Decidability of independence for these equivalence relations is also open.

Closely related to the problem of Core XQuery Equivalence

Some special cases of equivalence is ok;
• “Linear Navigational XQuery” – only increase the size of the DB linearly
(to syntactically enforce, allow no nesting of For loops)
• “Linear Navigational Updates” --- no Insert/Replace lies within the scope of two
For Loops
From results of Maneth and Engelfriet, it follows that equivalence of Linear Updates
is decidable. Using this we can show that independence for Linear XQuery queries
and Linear Updates is decidable.

18

Approaches to Independence
for XQuery Update Facility

For Navigational XQuery/XUpdate, boolean equivalence have an "exact approach":
translate updates and queries to logic, and test equivalence.

Only works for these restricted languages, ridiculous worst-case complexity.

Approximate approach based on Projection + Intersection.
Utilized in B. and Cheney, VLDB 2009, assuming a schema.
• Get a set of schema types representing the "nodes read by the query"
• Get another set of schema types representing the "nodes updated by the
update expression."
• See if the two sets can overlap.
Very similar to the approach taken for Iterative Updates by Ghelli, Rose, Simeon

Here we will outline a more general approach, which links the independence
problem with provenance.

March, 2010 XML Updates

Destabilizers: A Framework For Relating Updates and Query Changes

Fix
• “any data model”, consisting of query inputs and query outputs
• “any query language” QL
• “any update language” UL
• Let ≅ be an equivalence relation on query outputs

Fix a query Q, data object D, and output object Q(D)=D’

The destabilizer of Q(D)=D’ is the set of updates u ∈ UL such
that : Q(u(D)) À D’

Of course, for any reasonable update language, there
will be infinitely many such updates.
We want a finite representation of this set.

March, 2010 XML Updates

Destabilizer Framework
An destabilizer representation system RS is a collection of objects and an effective
mapping associating each rep ∈ RS to a collection of updates.

An exact destabilizer of Q(D)=D’ is an object in RS
representing the set of updates u such that Q(u(D)) À D’

A sound destabilizer of Q(D)=D’ is an object in RS
representing a superset of the updates u such that Q(u(D))
À D’

Would like an exact destabilizer, will settle for a sound one

March, 2010 XML Updates

Destabilizers for XML queries
Data Model =XML documents along with variable environments
QL= XML Query Language. E.g. Core XQuery
Output objects= Query results (new document + node list)

UL= sequence of “concrete updates”:
delete nodeid, rename nodeid as a, insert T into nodeid as first,…

Possible values of ≅ are : ≅bool , ≅node , ≅subtree

Talk about Destabbool(Q,D), Destabnode(Q,D), Destabsubtree(Q,D)

March, 2010 XML Updates

Representation Systems
How to represent infinite collections of update sequences?

“Node Destabilizer”: an update sequence is abstracted by the set of nodes that are
targets of some update in the sequence.

Unwinding the general definition to this setting:
A set of nodes S is a sound node destabilizer if every sequence of updates
that modifies the result of Q on D contains a target in S

March, 2010 XML Updates

Representation Systems
How to represent infinite collections of update sequences?

Node/Update Type Destabilizer: an update sequence is abstracted
by the set of pairs (target node,update type) that are contained within it

Update type = Insert into as first, Rename, Replace, Delete, Insert after …
E.g. (Insert into as first, n4), (Replace, n6)

A set of node/type pairs S is a sound node-type destabilizer if every sequence of
updates that modifies the result of Q on D contains an update with node type T and
target n with (T,n) in S

March, 2010 XML Updates

Representation Systems
How to represent infinite collections of update sequences?

Many others:

Sets of update nodes:
(i1,…ik) represents update sequences that
contain updates that modify each of i1 …. ik

Insert A in nodeId, where A is a tree automaton
describing the content of the insert

25

What good is a destabilizer?
Could be useful for understanding query results?

Can be useful for maintaining query at runtime.

Q(D)

DS=Destab(Q,D)

Update U U ∈ DS?

RecomputeDo Nothing

March, 2010 XML Updates

Negative Results

Theorem:
• Even for simple tree pattern queries, one cannot calculate an exact
destabilizer in either the node or node/type representations.
• Calculating a minimal sound destabilizer in either of them is NP-hard
even for very simple query languages. It is non-elementary for Core
XQuery.

Best one can do is calculating a sound destabilizer that is (heuristically) pretty
good.
Of course, one can always calculate a trivial sound destabilizer:
e.g. all nodes.

March, 2010 XML Updates

Destabilizer Algorithms

Calculate Inductively – all inductive cases are indifferent to the type
of destabilizer used!

XQuery control constructs:
Destab*((Q1 , Q2), D)= Destab*(Q1,D) , Destab*(Q2,D)

Inductive cases are sensitive to the equivalence relation used:

Q= if Q1 then Q2 else Q3 Destabnode (Q,D) = Destabbool(Q1,D)
= if Q1 then Destabnode(Q2,D) else
Destabnode(Q3,D)

March, 2010 XML Updates

Destabilizer Algorithms
Q=<A> Q’

Destabnode(Q,D) =
Destabsubtree(Q,D)= Destabsubtree(Q’,D)

Destabbool(Q,D) = ?? ∅

March, 2010 XML Updates

Destabilizer Algorithms: base cases

Q=$x/axis::A
Focus on
Q=$x/child::A

For node/type-based destabilizer

Destabnode(Q,D)= (delete, $x(D)), (rename, $x/child::*(D))…
…

For node-based destabilizer:
Destabnode(Q,D)= $x(D) ∪ $x/child::*(D)

Here depends heavily on the representation system.

March, 2010 XML Updates

Destabilizers and Query Rewriting

Destabilizer based on the previous two representation systems
can be implemented by query rewriting.

In the case of node destabilizer, get a single query.

For node based destabilizer: Q=$x/child::A
Destabnode(Q)= $x ∪ $x/child::*

In the case of node/type destabilizer, need a query for each
operation type op, returning the nodes n such that (n,op) is in the
destabilizer

March, 2010 XML Updates

Query-rewriting
There are several motivations for destabilizers
• result understanding
• runtime view maintenance:
determine when an update sequence comes in whether there is some need to
recompute the query. By pre-computing the destabilizer, get a linear time test
• static analysis
Given an update program, determine whether it can possibly generate
an update that modifies the query result; if answer is no, can eliminate
runtime checks.

Being able to calculate destabilizer via query-rewriting has particular advantages
for the third application

32

Destabilizers and Independence Analysis

D
Destab(Q,D) representing destabilizing
updates

DestabQ

QCompile Time Query DestabQ

U Query TargU

Targu Representation of generated
updates

Analysis time: Check if TargU can overlap with DetabQ

Runtime:

March, 2010 XML Updates

Independence Analysis: a pragmatic approach

Given update program UP, get a query that represents the targets:

If these two queries cannot overlap, then U and Q are independent

E.g. Delete $doc/child::A/child::E
$doc/child::A/child::E

Get destabilizer of Q:

Q=$doc/child::C

For node destabilizer:
$doc/child::C $doc ∪ $doc/child::*

UP=Delete $doc/child::A/child::E

For Node/Type destabilizers, get something more accuracy than above.

March, 2010 XML Updates

Independence Analysis and Query Rewriting

• A destabilizer representation and an algorithm for
producing a representation via query-rewriting.

• An algorithm for producing a representation of the update sequences
produced by from an update expression

• An intersection test.

Can think of an independence analysis as consisting of consisting of two
components.

Just described

Obvious approach
for w3c language

Many
Options

35

Intersection tests
Need to see if ∀ D Q1(D) Å Q2(D) = ∅

Abstract queries by downward paths, and then use a simple
path overlap test

Automata-theoretic approaches: translate directly into tree or
string automata. (B., Bonifati, Flesca, Vyas)

Translate queries into logical expressions, use a satisfiability
test for the logic.

MONA, mu-calculus of ordered trees (Geneves &Layaida)

Some prior approaches to this problem:

36

Intersection tests
Need to see if ∀ D Q1(D) Å Q2(D) = ∅

Abstract queries by downward paths, and then use a simple path overlap test

Automata-theoretic approaches: translate directly into tree or
string automata. (B., Bonifati, Flesca, Vyas)

Translate queries into logical expressions, use a satisfiability
test for the logic.

MONA, mu-calculus of ordered trees (Geneves &Layaida)

Abstract by existential first-order formulas, and then translate
into a logic over the integers with orders. Use Satisfiability Modulo
Order constraint solvers.

March, 2010 XML Updates

Summary on Independence Analysis
via Destabilizers

Unified approach to several update analyses
• Represent updates that can destabilize a query
• Useful for comprehending results, view maintenance, static analysis
• Many representations possible

• trade off precision of representation for complexity of algorithm,
ability to perform intersection tests
• Allows one to track the places where precision is being lost in an
algorithm: coarse representation, computation of representation,
intersection test.

• Can work with a schema or without

38March, 2010 XML Updates

Future Challenges

38

• Extending from the core: True scalability to XQuery/Update Facility
features.
• Dealing with data values, aggregation.

• Need to understand how to deal with these in core uery analysis
(e.g. intersection tests).

• Integration with optimization frameworks of update processors

39March, 2010 XML Updates

Challenges II

39

• Integration with other approaches to view-maintenance
• Analysis of more powerful languages.

• Iterative features
• Commutativity analysis of updates in the presence of a
schema
• Benchmarks

